Module ukat.vessels.tests.test_phase_contrast

Classes

class TestPC
Expand source code
class TestPC:
    # Create arrays for testing
    correct_signal = np.arange(2000).reshape((10, 10, 20))  # velocity array
    two_dim_signal = np.arange(100).reshape((10, 10))
    vel_encoding = 100
    affine = np.eye(4)
    mask = np.ones(correct_signal.shape, dtype=bool)

    # Gold standard: [mean, std, min, max] of velocity_array when input
    # is `correct_signal`
    gold_standard = [999.5, 577.3501970208376, 0, 1999]

    # Expected PhaseContrast statistics for ROI, velocity and flow
    num_pixels_standard = [100] * 20
    area_standard = [1.0] * 20  # Each pixel is 1mm*1mm, but area is in cm2
    min_vel_standard = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
                        14, 15, 16, 17, 18, 19]
    mean_vel_standard = [990.0, 991.0, 992.0, 993.0, 994.0, 995.0, 996.0,
                         997.0, 998.0, 999.0, 1000.0, 1001.0, 1002.0,
                         1003.0, 1004.0, 1005.0, 1006.0, 1007.0, 1008.0,
                         1009.0]
    max_vel_standard = [1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987,
                        1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
                        1996, 1997, 1998, 1999]
    std_vel_standard = [577.3214009544423] * 20
    rbf_standard = [59400.0, 59460.0, 59520.0, 59580.0, 59640.0, 59700.0,
                    59760.0, 59820.0, 59880.0, 59940.0, 60000.0, 60060.0,
                    60120.0, 60180.0, 60240.0, 60300.0, 60360.0, 60420.0,
                    60480.0, 60540.0]
    mean_vel_global_standard = 999.5
    rbf_mean_standard = 59970.0
    resistive_index_standard = 0.018830525272547076

    # Velocity array gold standard stats assuming the `correct_signal`
    # is a phase image.
    artificial_vel_array_standard = [0.0, 181.47064907546604,
                                     -314.1592653589793, 314.1592653589793]

    def test_velocity_array(self):
        vel_array_whole_mask = PhaseContrast(self.correct_signal,
                                             self.affine,
                                             self.mask).velocity_array
        vel_stats = arraystats.ArrayStats(vel_array_whole_mask).calculate()
        npt.assert_allclose([vel_stats["mean"]["3D"], vel_stats["std"]["3D"],
                            vel_stats["min"]["3D"], vel_stats["max"]["3D"]],
                            self.gold_standard, rtol=1e-7, atol=1e-9)

    def test_input_errors(self):
        # Check that it fails when input pixel_array has incorrect shape
        with pytest.raises(ValueError):
            PhaseContrast(self.two_dim_signal, self.affine, self.mask)

    def test_affine_pixel_spacing(self):
        pc_obj = PhaseContrast(self.correct_signal, self.affine, self.mask)
        npt.assert_allclose(pc_obj.pixel_spacing, [1.0, 1.0],
                            rtol=1e-7, atol=1e-9)
        affine_test_1 = np.eye(4)
        affine_test_1[:, 0] = [1, 2, 2, 0]
        pc_obj = PhaseContrast(self.correct_signal, affine_test_1, self.mask)
        npt.assert_allclose(pc_obj.pixel_spacing, [1.0, 3.0],
                            rtol=1e-7, atol=1e-9)
        affine_test_2 = affine_test_1
        affine_test_2[:, 1] = [2, 1, 2, 0]
        pc_obj = PhaseContrast(self.correct_signal, affine_test_2, self.mask)
        npt.assert_allclose(pc_obj.pixel_spacing, [3.0, 3.0],
                            rtol=1e-7, atol=1e-9)

    def test_mask(self):
        # Create a mask where the first 5 rows of each phase
        # are False and the rest is True.
        partial_mask = np.ones(self.correct_signal.shape, dtype=bool)
        partial_mask[:5, ...] = False

        all_pixels = PhaseContrast(self.correct_signal, self.affine, self.mask)
        masked_pixels = PhaseContrast(self.correct_signal,
                                      self.affine, partial_mask)

        assert (all_pixels.velocity_array !=
                masked_pixels.velocity_array).any()
        assert (all_pixels.mean_velocity !=
                masked_pixels.mean_velocity).any()
        assert (all_pixels.mean_velocity_global !=
                masked_pixels.mean_velocity_global)
        assert (all_pixels.rbf != masked_pixels.rbf).any()
        assert all_pixels.mean_rbf != masked_pixels.mean_rbf

    def test_output_parameters(self):
        pc_obj = PhaseContrast(self.correct_signal, self.affine, self.mask)
        npt.assert_allclose(pc_obj.num_pixels, self.num_pixels_standard,
                            rtol=1e-7, atol=1e-9)
        npt.assert_allclose(pc_obj.area, self.area_standard,
                            rtol=1e-7, atol=1e-9)
        npt.assert_allclose(pc_obj.min_velocity,
                            self.min_vel_standard,
                            rtol=1e-7, atol=1e-9)
        npt.assert_allclose(pc_obj.mean_velocity,
                            self.mean_vel_standard,
                            rtol=1e-7, atol=1e-9)
        npt.assert_allclose(pc_obj.max_velocity,
                            self.max_vel_standard,
                            rtol=1e-7, atol=1e-9)
        npt.assert_allclose(pc_obj.std_velocity,
                            self.std_vel_standard,
                            rtol=1e-7, atol=1e-9)
        npt.assert_allclose(pc_obj.rbf, self.rbf_standard,
                            rtol=1e-7, atol=1e-9)
        npt.assert_allclose(pc_obj.mean_velocity_global,
                            self.mean_vel_global_standard,
                            rtol=1e-7, atol=1e-9)
        npt.assert_allclose(pc_obj.mean_rbf, self.rbf_mean_standard,
                            rtol=1e-7, atol=1e-9)
        npt.assert_allclose(pc_obj.resistive_index,
                            self.resistive_index_standard,
                            rtol=1e-7, atol=1e-9)

    def test_get_stats_table(self):
        pc_obj = PhaseContrast(self.correct_signal, self.affine, self.mask)
        stats_table = pc_obj.get_stats_table()
        assert type(stats_table) == pd.DataFrame
        number_rows = len(stats_table)
        number_columns = len(stats_table.columns)
        assert number_rows == 20
        assert number_columns == 7

    def test_to_csv(self):
        if os.path.exists('test_output'):
            shutil.rmtree('test_output')
        os.makedirs('test_output', exist_ok=True)
        csv_path = os.path.join('test_output', "pc_test_output.csv")
        pc_obj = PhaseContrast(self.correct_signal, self.affine, self.mask)
        # Save .csv and and open it to compare if it's the same as expected.
        pc_obj.to_csv(csv_path)
        df = pd.read_csv(csv_path)
        shutil.rmtree('test_output')
        list_rows = df.values.tolist()
        # Check if the content in the variable 'list_rows' is as expected.
        assert [row[1] for row in list_rows] == self.rbf_standard
        assert [row[2] for row in list_rows] == self.area_standard
        assert [row[3] for row in list_rows] == self.num_pixels_standard
        assert [row[4] for row in list_rows] == self.mean_vel_standard
        assert [row[5] for row in list_rows] == self.min_vel_standard
        assert [row[6] for row in list_rows] == self.max_vel_standard
        assert [row[7] for row in list_rows] == self.std_vel_standard

    def test_plot(self):
        # Since we cannot see the actual plots during the testing, the best
        # approach is to check if it fails with an incorrect stat call.
        with pytest.raises(ValueError):
            pc_obj = PhaseContrast(self.correct_signal, self.affine, self.mask)
            pc_obj.plot('incorrect_stat_name')

    def test_to_nifti(self):
        # Create a PC instance and test different export to NIFTI scenarios
        pc_obj = PhaseContrast(self.correct_signal, self.affine, self.mask)

        if os.path.exists('test_output'):
            shutil.rmtree('test_output')
        os.makedirs('test_output', exist_ok=True)

        # Check all is saved.
        pc_obj.to_nifti(output_directory='test_output',
                        base_file_name='pctest', maps='all')
        output_files = os.listdir('test_output')
        assert len(output_files) == 2
        assert 'pctest_velocity_array.nii.gz' in output_files
        assert 'pctest_mask.nii.gz' in output_files

        for f in os.listdir('test_output'):
            os.remove(os.path.join('test_output', f))

        # Check that no files are saved.
        pc_obj.to_nifti(output_directory='test_output',
                        base_file_name='pctest', maps=[])
        output_files = os.listdir('test_output')
        assert len(output_files) == 0

        # Check that only velocity_array saved.
        pc_obj.to_nifti(output_directory='test_output',
                        base_file_name='pctest', maps=['velocity_array'])
        output_files = os.listdir('test_output')
        assert len(output_files) == 1
        assert 'pctest_velocity_array.nii.gz' in output_files

        for f in os.listdir('test_output'):
            os.remove(os.path.join('test_output', f))

        # Check that it fails when no maps are given
        with pytest.raises(ValueError):
            pc_obj = PhaseContrast(self.correct_signal, self.affine, self.mask)
            pc_obj.to_nifti(output_directory='test_output',
                            base_file_name='pctest', maps='')

        # Delete 'test_output' folder
        shutil.rmtree('test_output')

    def test_convert_to_velocity(self):
        # Assuming that correct_signal is a phase image and not velocity array.
        vel_array_calculated = convert_to_velocity(self.correct_signal,
                                                   self.vel_encoding)
        vel_stats = arraystats.ArrayStats(vel_array_calculated).calculate()
        npt.assert_allclose([vel_stats["mean"]["3D"], vel_stats["std"]["3D"],
                            vel_stats["min"]["3D"], vel_stats["max"]["3D"]],
                            self.artificial_vel_array_standard,
                            rtol=1e-7, atol=1e-9)

    def test_real_data(self):
        # Get left PC test data
        _, velocity, mask, affine, _ = fetch.phase_contrast_left_philips()

        # Gold standard statistics
        gold_standard_left = [0.009531885391710501, 0.5249643990944701,
                              0.0, 61.17216385900974]
        avrg_vel_left = 25.57730254026419
        rbf_mean_standard_left = 448.3799164652045
        resistive_index_left = 0.6089871033735511

        pc_obj = PhaseContrast(velocity, affine, mask)
        vel_stats = arraystats.ArrayStats(pc_obj.velocity_array).calculate()
        npt.assert_allclose([vel_stats["mean"]["3D"], vel_stats["std"]["3D"],
                            vel_stats["min"]["3D"], vel_stats["max"]["3D"]],
                            gold_standard_left, rtol=0.01, atol=0)
        npt.assert_allclose(pc_obj.mean_velocity_global, avrg_vel_left,
                            rtol=0.01, atol=0)
        npt.assert_allclose(pc_obj.mean_rbf, rbf_mean_standard_left,
                            rtol=0.01, atol=0)
        npt.assert_allclose(pc_obj.resistive_index, resistive_index_left,
                            rtol=0.01, atol=0)

        # Get right PC test data
        _, velocity, mask, affine, _ = fetch.phase_contrast_right_philips()

        # Gold standard statistics
        gold_standard_right = [0.014580785805088049, 0.7169850435217269,
                               0.0, 97.36264065280557]
        avrg_vel_right = 28.752678965667474
        rbf_mean_standard_right = 685.880219
        resistive_index_right = 0.6713997583484632

        pc_obj = PhaseContrast(velocity, affine, mask)
        vel_stats = arraystats.ArrayStats(pc_obj.velocity_array).calculate()
        npt.assert_allclose([vel_stats["mean"]["3D"], vel_stats["std"]["3D"],
                            vel_stats["min"]["3D"], vel_stats["max"]["3D"]],
                            gold_standard_right, rtol=0.01, atol=0)
        npt.assert_allclose(pc_obj.mean_velocity_global, avrg_vel_right,
                            rtol=0.01, atol=0)
        npt.assert_allclose(pc_obj.mean_rbf, rbf_mean_standard_right,
                            rtol=0.01, atol=0)
        npt.assert_allclose(pc_obj.resistive_index, resistive_index_right,
                            rtol=0.01, atol=0)

Class variables

var affine
var area_standard
var artificial_vel_array_standard
var correct_signal
var gold_standard
var mask
var max_vel_standard
var mean_vel_global_standard
var mean_vel_standard
var min_vel_standard
var num_pixels_standard
var rbf_mean_standard
var rbf_standard
var resistive_index_standard
var std_vel_standard
var two_dim_signal
var vel_encoding

Methods

def test_affine_pixel_spacing(self)
def test_convert_to_velocity(self)
def test_get_stats_table(self)
def test_input_errors(self)
def test_mask(self)
def test_output_parameters(self)
def test_plot(self)
def test_real_data(self)
def test_to_csv(self)
def test_to_nifti(self)
def test_velocity_array(self)