Module ukat.mapping.tests.test_t2_stimfit

Classes

class TestEpg
Expand source code
class TestEpg:
    t2 = 0.1
    b1 = 0.95

    def test_selective(self):
        model = StimFitModel(mode='selective', ukrin_vendor='ge')
        sig = _epgsig(self.t2, self.b1, model.opt, model.mode)
        npt.assert_allclose(sig, np.array([0.53193464, 0.48718256, 0.41393849,
                                           0.37639148, 0.32247532, 0.29132453,
                                           0.25050307, 0.22604609, 0.19430487,
                                           0.1755666]),
                            rtol=1e-5, atol=1e-5)

    def test_non_selective(self):
        model = StimFitModel(mode='non_selective', ukrin_vendor='ge')
        sig = _epgsig(self.t2, self.b1, model.opt, model.mode)
        npt.assert_allclose(sig, np.array([0.87087025, 0.7713902, 0.6727603,
                                           0.59694589, 0.51965957, 0.46200336,
                                           0.40135138, 0.35760991, 0.30993556,
                                           0.27684428]),
                            rtol=1e-5, atol=1e-5)

Class variables

var b1
var t2

Methods

def test_non_selective(self)
def test_selective(self)
class TestStimFitModel
Expand source code
class TestStimFitModel:
    def test_invalid_model(self):
        with pytest.raises(ValueError):
            model = StimFitModel(mode='invalid_model')

    def test_invalid_comp(self):
        with pytest.raises(ValueError):
            model = StimFitModel(n_comp=0)

        with pytest.raises(ValueError):
            model = StimFitModel(n_comp=4)

        with pytest.raises(ValueError):
            model = StimFitModel(n_comp='one')

    def test_invalid_vendor(self):
        with pytest.warns(UserWarning):
            model = StimFitModel(ukrin_vendor='brucker')

    def test_mode_switching(self):
        model = StimFitModel(mode='selective')
        assert model.mode == 'selective'
        assert model.opt['RFe']['angle'] == 90
        assert model.opt['Dz'] == [-0.5, 0.5]

        model = StimFitModel(mode='non_selective')
        assert model.mode == 'non_selective'
        assert model.opt['RFe']['angle'] == 90
        with pytest.raises(KeyError):
            model.opt['Dz']

    def test_n_comp_switching(self):
        model = StimFitModel(n_comp=1)
        assert model.n_comp == 1
        assert model.opt['lsq']['Ncomp'] == 1
        assert model.opt['lsq']['X0'][2] == 1

        model = StimFitModel(n_comp=2)
        assert model.n_comp == 2
        assert model.opt['lsq']['Ncomp'] == 2
        assert model.opt['lsq']['X0'][2] == 0.331

        model = StimFitModel(n_comp=3)
        assert model.n_comp == 3
        assert model.opt['lsq']['Ncomp'] == 3
        assert model.opt['lsq']['X0'][2] == 0.036

    def test_vendor_switching(self):
        model = StimFitModel(mode='selective', ukrin_vendor='ge')
        assert model.vendor == 'ge'
        assert model.opt['RFe']['tau'] == 2000 / 1e6

        model = StimFitModel(mode='selective', ukrin_vendor='philips')
        assert model.vendor == 'philips'
        assert model.opt['RFe']['tau'] == 3820 / 1e6

        model = StimFitModel(mode='selective', ukrin_vendor='siemens')
        assert model.vendor == 'siemens'
        assert model.opt['RFe']['tau'] == 3072 / 1e6

    def test_set_rf(self):
        model = StimFitModel(mode='selective', ukrin_vendor='ge')
        npt.assert_almost_equal(model.opt['RFe']['RF'][-1], 2.58327955e-07)
        npt.assert_almost_equal(model.opt['RFe']['alpha'][-1], 0.04164681,
                                decimal=5)
        npt.assert_almost_equal(model.opt['RFr']['RF'][-1], -3.55622605e-05)
        npt.assert_almost_equal(model.opt['RFr']['alpha'][-1], 1.97107315)

        model = StimFitModel(mode='selective', ukrin_vendor='philips')
        npt.assert_almost_equal(model.opt['RFe']['RF'][-1], 3.59081850e-04)
        npt.assert_almost_equal(model.opt['RFe']['alpha'][-1], 0.05002553,
                                decimal=5)
        npt.assert_almost_equal(model.opt['RFr']['RF'][-1], 0.00473865)
        npt.assert_almost_equal(model.opt['RFr']['alpha'][-1],  0.46764775,
                                decimal=5)

        model = StimFitModel(mode='selective', ukrin_vendor='siemens')
        npt.assert_almost_equal(model.opt['RFe']['RF'][-1], 1.68182263e-07)
        npt.assert_almost_equal(model.opt['RFe']['alpha'][-1], 0.07221162,
                                decimal=5)
        npt.assert_almost_equal(model.opt['RFr']['RF'][-1], -3.71744163e-05)
        npt.assert_almost_equal(model.opt['RFr']['alpha'][-1], 1.31133498)

    def test_getters(self):
        model = StimFitModel(mode='selective', ukrin_vendor='ge')
        assert len(model.get_opt()) == 11
        assert len(model.get_lsq()) == 6
        assert len(model.get_rfe()) == 7
        assert len(model.get_rfr()) == 8

Methods

def test_getters(self)
def test_invalid_comp(self)
def test_invalid_model(self)
def test_invalid_vendor(self)
def test_mode_switching(self)
def test_n_comp_switching(self)
def test_set_rf(self)
def test_vendor_switching(self)
class TestT2StimFit
Expand source code
class TestT2StimFit:
    image_ge, affine_ge, te_ge = fetch.t2_ge(1)
    image_ge = image_ge[35:45, 50:65, 2:4, :]  # Crop to speed up tests
    image_philips, affine_philips, te_philips = fetch.t2_philips(2)
    image_philips = image_philips[35:45, 50:65, 2:4, :]
    image_siemens, affine_siemens, te_siemens = fetch.t2_siemens(1)
    image_siemens = image_siemens[35:45, 40:55, 2:4, :]

    # selective
    def test_selectiveness(self):
        # Selective
        model = StimFitModel(mode='selective', ukrin_vendor='ge')
        mapper = T2StimFit(self.image_ge, self.affine_ge, model)
        stats = arraystats.ArrayStats(mapper.t2_map).calculate()
        npt.assert_allclose([stats["mean"]["3D"], stats["std"]["3D"],
                             stats["min"]["3D"], stats["max"]["3D"]],
                            [164.331581, 199.057747, 51.268116, 1455.551225],
                            rtol=1e-2, atol=0.25)

        # Non-selective
        model = StimFitModel(mode='non_selective', ukrin_vendor='ge')
        mapper = T2StimFit(self.image_ge, self.affine_ge, model)
        stats = arraystats.ArrayStats(mapper.t2_map).calculate()
        npt.assert_allclose([stats["mean"]["3D"], stats["std"]["3D"],
                             stats["min"]["3D"], stats["max"]["3D"]],
                            [165.994692, 203.583211, 51.827107, 1497.168001],
                            rtol=1e-2, atol=0.25)

    # n_comp
    def test_n_comp(self):
        # Two Components
        model = StimFitModel(mode='selective', ukrin_vendor='ge', n_comp=2)
        mapper = T2StimFit(self.image_ge[0, 14, :, :], self.affine_ge, model)

        npt.assert_allclose([mapper.t2_map[0, 0]],
                            [117.991529],
                            rtol=5e-2, atol=0.1)

        # Three Components
        # Cant get this to be stable across operating systems so commented out.

        # model = StimFitModel(mode='selective', ukrin_vendor='ge', n_comp=3)
        # mapper = T2StimFit(self.image_ge[0, 14, :, :], self.affine_ge, model)
        # npt.assert_allclose([mapper.t2_map[0, 2]],
        #                     [1245.291925],
        #                     rtol=5e-2, atol=0.1)

    # vendor
    def test_vendor(self):
        # Philips
        model = StimFitModel(mode='selective', ukrin_vendor='philips')
        mapper = T2StimFit(self.image_philips, self.affine_philips, model)
        stats = arraystats.ArrayStats(mapper.t2_map).calculate()
        npt.assert_allclose([stats["mean"]["3D"], stats["std"]["3D"],
                             stats["min"]["3D"], stats["max"]["3D"]],
                            [281.52594, 596.832203, 36.470879, 3000.0],
                            rtol=1e-6, atol=1e-4)

        # Siemens
        model = StimFitModel(mode='selective', ukrin_vendor='siemens')
        mapper = T2StimFit(self.image_siemens, self.affine_siemens, model)
        stats = arraystats.ArrayStats(mapper.t2_map).calculate()
        npt.assert_allclose([stats["mean"]["3D"], stats["std"]["3D"],
                             stats["min"]["3D"], stats["max"]["3D"]],
                            [120.47096, 190.454984, 26.621704, 2999.999651],
                            rtol=1e-5, atol=1e-2)

    # mask
    def test_mask(self):
        mask = self.image_ge[..., 0] > 3000
        model = StimFitModel(mode='non_selective', ukrin_vendor='ge')
        mapper = T2StimFit(self.image_ge, self.affine_ge, model, mask=mask)
        stats = arraystats.ArrayStats(mapper.t2_map).calculate()
        npt.assert_allclose([stats["mean"]["3D"], stats["std"]["3D"],
                             stats["min"]["3D"], stats["max"]["3D"]],
                            [156.693513, 207.797,  0.0, 1497.168001],
                            rtol=1e-2, atol=0.25)

    # threading
    def test_st(self):
        model = StimFitModel(mode='non_selective', ukrin_vendor='ge')
        mapper = T2StimFit(self.image_ge, self.affine_ge, model,
                           multithread=False)
        stats = arraystats.ArrayStats(mapper.t2_map).calculate()
        npt.assert_allclose([stats["mean"]["3D"], stats["std"]["3D"],
                             stats["min"]["3D"], stats["max"]["3D"]],
                            [165.994692, 203.583211, 51.827107, 1497.168001],
                            rtol=1e-2, atol=0.25)

    # normalisation
    def test_normalisation_warning(self):
        with pytest.warns(UserWarning):
            model = StimFitModel(mode='non_selective', ukrin_vendor='ge')
            mapper = T2StimFit(self.image_ge * 2, self.affine_ge, model,
                               norm=False)

    def test_etl_signal_exception(self):
        with pytest.raises(Exception):
            model = StimFitModel(mode='non_selective', ukrin_vendor='ge')
            mapper = T2StimFit(self.image_ge[..., :-2], self.affine_ge, model)

    # to_nifti
    def test_to_nifti(self):
        mask = self.image_ge[..., 0] > 3000
        model = StimFitModel(mode='non_selective', ukrin_vendor='ge')
        mapper = T2StimFit(self.image_ge, self.affine_ge, model, mask=mask)

        if os.path.exists('test_output'):
            shutil.rmtree('test_output')
        os.makedirs('test_output', exist_ok=True)

        # Check all is saved.
        mapper.to_nifti(output_directory='test_output',
                        base_file_name='t2stimfittest', maps='all')
        output_files = os.listdir('test_output')
        assert len(output_files) == 6
        assert 't2stimfittest_b1_map.nii.gz' in output_files
        assert 't2stimfittest_b1_map_scaled.nii.gz' in output_files
        assert 't2stimfittest_m0_map.nii.gz' in output_files
        assert 't2stimfittest_mask.nii.gz' in output_files
        assert 't2stimfittest_r2_map.nii.gz' in output_files
        assert 't2stimfittest_t2_map.nii.gz' in output_files

        for f in os.listdir('test_output'):
            os.remove(os.path.join('test_output', f))

        # Check that no files are saved.
        mapper.to_nifti(output_directory='test_output',
                        base_file_name='t2stimfittest', maps=[])
        output_files = os.listdir('test_output')
        assert len(output_files) == 0

        # Check that only t2, mask and r2 are saved.
        mapper.to_nifti(output_directory='test_output',
                        base_file_name='t2stimfittest', maps=['mask', 't2',
                                                              'r2'])
        output_files = os.listdir('test_output')
        assert len(output_files) == 3
        assert 't2stimfittest_mask.nii.gz' in output_files
        assert 't2stimfittest_t2_map.nii.gz' in output_files
        assert 't2stimfittest_r2_map.nii.gz' in output_files

        for f in os.listdir('test_output'):
            os.remove(os.path.join('test_output', f))

        # Check that it fails when no maps are given
        with pytest.raises(ValueError):
            mapper.to_nifti(output_directory='test_output',
                            base_file_name='t2stimfittest', maps='')

        # Delete 'test_output' folder
        shutil.rmtree('test_output')

    def test_get_fit_signal(self):
        model = StimFitModel(mode='non_selective', ukrin_vendor='ge')
        mapper = T2StimFit(self.image_ge, self.affine_ge, model,
                           multithread=False)
        fit_signal = mapper.get_fit_signal()
        stats = arraystats.ArrayStats(fit_signal).calculate()
        npt.assert_allclose([stats["mean"]["4D"], stats["std"]["4D"],
                             stats["min"]["4D"], stats["max"]["4D"]],
                            [0.4638738536540625,
                             0.191494386548333,
                             0.013169224663907297,
                             1.0085580888230137],
                            rtol=1e-6, atol=1e-4)

Class variables

var affine_ge
var affine_philips
var affine_siemens
var image_ge
var image_philips
var image_siemens
var te_ge
var te_philips
var te_siemens

Methods

def test_etl_signal_exception(self)
def test_get_fit_signal(self)
def test_mask(self)
def test_n_comp(self)
def test_normalisation_warning(self)
def test_selectiveness(self)
def test_st(self)
def test_to_nifti(self)
def test_vendor(self)