Module ukat.mapping.mtr

Classes

class MTR (pixel_array, affine, mask=None)

Generates a Magnetisation Transfer Ratio (MTR) map from a series of volumes collected with 2 different magnetisation transfer values (ON and OFF).

Attributes

mtr_map : np.ndarray
The estimated magnetisation transfer ratio values. Each value should be a float between 0 and 1.
shape : tuple
The shape of the MTR map.
mt_on : np.ndarray
The array corresponding to the magnetisation transfer value ON.
mt_off : np.ndarray
The array corresponding to the magnetisation transfer value OFF.
mask : np.ndarray
A boolean mask of the voxels to fit.

Initialise a MTR class instance.

Parameters

pixel_array : np.ndarray
A 3D/4D array containing the image at each magnetisation transfer value, i.e. the dimensions of the array are (x, y, 2) or (x, y, z, 2). The assumption is that mt_off comes first in pixel_array and mt_on comes second in pixel_array, i.e. pixel_array[…, 0] corresponds to mt_off and pixel_array[…, 1] corresponds to mt_on.
affine : np.ndarray
A matrix giving the relationship between voxel coordinates and world coordinates.
mask : np.ndarray, optional
A boolean mask of the voxels to fit. Should be the shape of the desired MTR map rather than the raw data i.e. omit the on/off dimension.
Expand source code
class MTR:
    """
    Generates a Magnetisation Transfer Ratio (MTR) map from a series of volumes
    collected with 2 different magnetisation transfer values (ON and OFF).

    Attributes
    ----------
    mtr_map : np.ndarray
        The estimated magnetisation transfer ratio values.
        Each value should be a float between 0 and 1.
    shape : tuple
        The shape of the MTR map.
    mt_on : np.ndarray
        The array corresponding to the magnetisation transfer value ON.
    mt_off : np.ndarray
        The array corresponding to the magnetisation transfer value OFF.
    mask : np.ndarray
        A boolean mask of the voxels to fit.
    """

    def __init__(self, pixel_array, affine, mask=None):
        """Initialise a MTR class instance.

        Parameters
        ----------
        pixel_array : np.ndarray
            A 3D/4D array containing the image at each magnetisation transfer
            value, i.e. the dimensions of the array are (x, y, 2) or
            (x, y, z, 2). The assumption is that `mt_off` comes first in
            `pixel_array` and `mt_on` comes second in `pixel_array`, i.e.
            `pixel_array[..., 0]` corresponds to `mt_off` and
            `pixel_array[..., 1]` corresponds to `mt_on`.
        affine : np.ndarray
            A matrix giving the relationship between voxel coordinates and
            world coordinates.
        mask : np.ndarray, optional
            A boolean mask of the voxels to fit. Should be the shape of the
            desired MTR map rather than the raw data i.e. omit the on/off
            dimension.
        """
        assert (pixel_array.shape[-1] == 2), 'The input should contain 2 MT ' \
                                             'values (ON / OFF). The last ' \
                                             'dimension of the input ' \
                                             'pixel_array must be 2.'
        if np.sum(pixel_array[..., 1]) >= np.sum(pixel_array[..., 0]):
            warnings.warn('The average intensity of the MT_ON image is more '
                          'than the average intensity of the MT_OFF image. '
                          'This will lead to negative MTR values which is not '
                          'usually desirable. Please check that you\'ve input '
                          'MT_ON and MT_OFF in the correct order in '
                          '`pixel_array`.')
        self.pixel_array = pixel_array
        self.shape = pixel_array.shape[:-1]
        self.affine = affine
        # Generate a mask if there isn't one specified
        if mask is None:
            self.mask = np.ones(self.shape, dtype=bool)
        else:
            self.mask = mask
        # The assumption is that MT_OFF comes first in `pixel_array`
        self.mt_off = np.squeeze(self.pixel_array[..., 0] * self.mask)
        # The assumption is that MT_ON comes second in `pixel_array`
        self.mt_on = np.squeeze(self.pixel_array[..., 1] * self.mask)
        # Magnetisation Transfer Ratio calculation
        self.mtr_map = np.squeeze(np.nan_to_num(((self.mt_off - self.mt_on) /
                                                 self.mt_off),
                                                posinf=0, neginf=0))

    def to_nifti(self, output_directory=os.getcwd(), base_file_name='Output',
                 maps='all'):
        """Exports some of the MTR class attributes to NIFTI.

        Parameters
        ----------
        output_directory : string, optional
            Path to the folder where the NIFTI files will be saved.
        base_file_name : string, optional
            Filename of the resulting NIFTI. This code appends the extension.
            Eg., base_file_name = 'Output' will result in 'Output.nii.gz'.
        maps : list or 'all', optional
            List of maps to save to NIFTI. This should either the string "all"
            or a list of maps from ["mtr_map", "mt_on", "mt_off", "mask"].
        """
        os.makedirs(output_directory, exist_ok=True)
        base_path = os.path.join(output_directory, base_file_name)
        if maps == 'all' or maps == ['all']:
            maps = ['mtr_map', 'mt_on', 'mt_off', 'mask']
        if isinstance(maps, list):
            for result in maps:
                if result == 'mtr' or result == 'mtr_map':
                    mtr_nifti = nib.Nifti1Image(self.mtr_map,
                                                affine=self.affine,
                                                dtype=float)
                    nib.save(mtr_nifti, base_path + '_mtr_map.nii.gz')
                elif result == 'mt_on':
                    mt_on_nifti = nib.Nifti1Image(self.mt_on,
                                                  affine=self.affine,
                                                  dtype=float)
                    nib.save(mt_on_nifti, base_path + '_mt_on.nii.gz')
                elif result == 'mt_off':
                    mt_off_nifti = nib.Nifti1Image(self.mt_off,
                                                   affine=self.affine,
                                                   dtype=float)
                    nib.save(mt_off_nifti, base_path + '_mt_off.nii.gz')
                elif result == 'mask':
                    mask_nifti = nib.Nifti1Image(self.mask.astype(np.uint16),
                                                 affine=self.affine)
                    nib.save(mask_nifti, base_path + '_mask.nii.gz')
        else:
            raise ValueError('No NIFTI file saved. The variable "maps" '
                             'should be "all" or a list of maps from '
                             '"["mtr_map", "mt_on", "mt_off", "mask"]".')

        return

Methods

def to_nifti(self, output_directory='/home/runner/work/ukat/ukat', base_file_name='Output', maps='all')

Exports some of the MTR class attributes to NIFTI.

Parameters

output_directory : string, optional
Path to the folder where the NIFTI files will be saved.
base_file_name : string, optional
Filename of the resulting NIFTI. This code appends the extension. Eg., base_file_name = 'Output' will result in 'Output.nii.gz'.
maps : list or 'all', optional
List of maps to save to NIFTI. This should either the string "all" or a list of maps from ["mtr_map", "mt_on", "mt_off", "mask"].