Module ukat.mapping.b0

Classes

class B0 (pixel_array, echo_list, affine, mask=None, unwrap=True, wrap_around=False)

Generates a B0 map from a series of volumes collected with 2 different echo times.

Attributes

b0_map : np.ndarray
The estimated B0 values in Hz
shape : tuple
The shape of the B0 map
mask : np.ndarray
A boolean mask of the voxels to fit
n_te : int
The number of TE used to calculate the map
delta_te : float
The difference between the second and the first Echo Time
phase0 : np.ndarray
The phase image corresponding to the first Echo Time
phase1 : np.ndarray
The phase image corresponding to the second Echo Time
phase_difference : np.ndarray
The difference between the 2 phase images

Initialise a B0 class instance.

Parameters

pixel_array : np.ndarray
A 4D/3D array containing the phase image at each echo time i.e. the dimensions of the array are [x, y, TE] or [x, y, z, TE].
echo_list : list
An array of the echo times in ms used for the last dimension of the raw data.
affine : np.ndarray
A matrix giving the relationship between voxel coordinates and world coordinates.
mask : np.ndarray, optional
A boolean mask of the voxels to fit. Should be the shape of the desired B0 map rather than the raw data i.e. omit the echo times dimension.
unwrap : boolean, optional
By default, this script applies the scipy phase unwrapping for each phase echo image.
wrap_around : boolean, optional
By default, this flag from unwrap_phase is False. The algorithm will regard the edges along the corresponding axis of the image to be connected and use this connectivity to guide the phase unwrapping process.Eg., voxels [0, :, :] are considered to be next to voxels [-1, :, :] if wrap_around=True.
Expand source code
class B0:
    """
    Generates a B0 map from a series of volumes collected
    with 2 different echo times.

    Attributes
    ----------
    b0_map : np.ndarray
        The estimated B0 values in Hz
    shape : tuple
        The shape of the B0 map
    mask : np.ndarray
        A boolean mask of the voxels to fit
    n_te : int
        The number of TE used to calculate the map
    delta_te : float
        The difference between the second and the first Echo Time
    phase0 : np.ndarray
        The phase image corresponding to the first Echo Time
    phase1 : np.ndarray
        The phase image corresponding to the second Echo Time
    phase_difference : np.ndarray
        The difference between the 2 phase images
    """

    def __init__(self, pixel_array, echo_list, affine, mask=None,
                 unwrap=True, wrap_around=False):
        """Initialise a B0 class instance.

        Parameters
        ----------
        pixel_array : np.ndarray
            A 4D/3D array containing the phase image at each
            echo time i.e. the dimensions of the array are
            [x, y, TE] or [x, y, z, TE].
        echo_list : list
            An array of the echo times in ms used for the last dimension of the
            raw data.
        affine : np.ndarray
            A matrix giving the relationship between voxel coordinates and
            world coordinates.
        mask : np.ndarray, optional
            A boolean mask of the voxels to fit. Should be the shape of the
            desired B0 map rather than the raw data i.e. omit the echo times
            dimension.
        unwrap : boolean, optional
            By default, this script applies the
            scipy phase unwrapping for each phase echo image.
        wrap_around : boolean, optional
            By default, this flag from unwrap_phase is False.
            The algorithm will regard the edges along the corresponding axis
            of the image to be connected and use this connectivity to guide the
            phase unwrapping process.Eg., voxels [0, :, :] are considered to be
            next to voxels [-1, :, :] if wrap_around=True.
        """

        self.pixel_array = pixel_array
        self.shape = pixel_array.shape[:-1]
        self.n_te = pixel_array.shape[-1]
        self.affine = affine
        # Generate a mask if there isn't one specified
        if mask is None:
            self.mask = np.ones(self.shape, dtype=bool)
        else:
            self.mask = mask
        if self.n_te == len(echo_list) and self.n_te == 2:
            # Get the Echo Times
            echo0 = echo_list[0]
            echo1 = echo_list[1]
            # Calculate DeltaTE in seconds
            self.delta_te = np.absolute(echo1 - echo0) * 0.001
            # Extract each phase image, mask them and rescale to
            # [-pi, pi] if not in that range already.
            self.phase0 = np.ma.masked_array(
                            convert_to_pi_range(np.squeeze(
                                self.pixel_array[..., 0])), mask=~self.mask)
            self.phase1 = np.ma.masked_array(
                            convert_to_pi_range(np.squeeze(
                                self.pixel_array[..., 1])), mask=~self.mask)
            if unwrap:
                # Unwrap each phase image
                self.phase0 = unwrap_phase(self.phase0,
                                           wrap_around=wrap_around)
                self.phase1 = unwrap_phase(self.phase1,
                                           wrap_around=wrap_around)
            # Phase difference
            self.phase_difference = self.phase1 - self.phase0
            # B0 Map calculation
            self.b0_map = self.phase_difference / (2 * np.pi * self.delta_te)
            # The following step checks in a central bounding box containing
            # the kidneys if there is an offset in the B0 Map and corrects
            # that offset if it exists. This is due to a jump in phase
            # that can occur during the unwrapping of the phase images.
            # Bounding Box
            prop = 0.5
            bx0 = int(self.shape[0] / 2 - prop / 2 * self.shape[0])
            bxf = int(self.shape[0] / 2 + prop / 2 * self.shape[0])
            by0 = int(self.shape[1] / 2 - prop / 2 * self.shape[1])
            byf = int(self.shape[1] / 2 + prop / 2 * self.shape[1])
            # B0 Map Mean inside the bounding box across the slices
            mean_central_b0 = np.mean(self.b0_map[bx0:bxf, by0:byf, ...])
            # B0 Map Offset Step
            b0_offset_step = 1 / self.delta_te
            # B0 Map Offset Correction
            self.b0_map -= (np.round(mean_central_b0 / b0_offset_step)) * \
                           b0_offset_step

            # Mask B0 Map
            self.b0_map[np.squeeze(~self.mask)] = 0
        else:
            raise ValueError('The input should contain 2 echo times.'
                             'The last dimension of the input pixel_array must'
                             'be 2 and the echo_list must only have 2 values.')

    def to_nifti(self, output_directory=os.getcwd(), base_file_name='Output',
                 maps='all'):
        """Exports some of the B0 class attributes to NIFTI.

        Parameters
        ----------
        output_directory : string, optional
            Path to the folder where the NIFTI files will be saved.
        base_file_name : string, optional
            Filename of the resulting NIFTI. This code appends the extension.
            Eg., base_file_name = 'Output' will result in 'Output.nii.gz'.
        maps : list or 'all', optional
            List of maps to save to NIFTI. This should either the string "all"
            or a list of maps from ["b0", "mask", "phase0", "phase1",
            "phase_difference"].
        """
        os.makedirs(output_directory, exist_ok=True)
        base_path = os.path.join(output_directory, base_file_name)
        if maps == 'all' or maps == ['all']:
            maps = ['b0', 'mask', 'phase0', 'phase1', 'phase_difference']
        if isinstance(maps, list):
            for result in maps:
                if result == 'b0' or result == 'b0_map':
                    b0_nifti = nib.Nifti1Image(self.b0_map, affine=self.affine)
                    nib.save(b0_nifti, base_path + '_b0_map.nii.gz')
                elif result == 'mask':
                    mask_nifti = nib.Nifti1Image(self.mask.astype(np.uint16),
                                                 affine=self.affine)
                    nib.save(mask_nifti, base_path + '_mask.nii.gz')
                elif result == 'phase0':
                    phase0_nifti = nib.Nifti1Image(self.phase0,
                                                   affine=self.affine)
                    nib.save(phase0_nifti, base_path + '_phase0.nii.gz')
                elif result == 'phase1':
                    phase1_nifti = nib.Nifti1Image(self.phase1,
                                                   affine=self.affine)
                    nib.save(phase1_nifti, base_path + '_phase1.nii.gz')
                elif result == 'phase_difference':
                    phase_diff_nifti = nib.Nifti1Image(self.phase_difference,
                                                       affine=self.affine)
                    nib.save(phase_diff_nifti, base_path +
                             '_phase_difference.nii.gz')
        else:
            raise ValueError('No NIFTI file saved. The variable "maps" '
                             'should be "all" or a list of maps from '
                             '"["b0", "mask", "phase0", "phase1", '
                             '"phase_difference"]".')

        return

Methods

def to_nifti(self, output_directory='/home/runner/work/ukat/ukat', base_file_name='Output', maps='all')

Exports some of the B0 class attributes to NIFTI.

Parameters

output_directory : string, optional
Path to the folder where the NIFTI files will be saved.
base_file_name : string, optional
Filename of the resulting NIFTI. This code appends the extension. Eg., base_file_name = 'Output' will result in 'Output.nii.gz'.
maps : list or 'all', optional
List of maps to save to NIFTI. This should either the string "all" or a list of maps from ["b0", "mask", "phase0", "phase1", "phase_difference"].